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Effect of physical and geometrical factors on 
interfacial debonding in the fibre push-out test: 
A new strength-based model 
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Nanyang Avenue, Singapore 2263 

A strength-based model for the single-fibre push-out test has been developed. Using this 
model, the matrix stress, fibre stress and interfacial shear stress in a single fibre specimen 
subjected to push-out loading was considered. The effect of physical and geometrical factors 
on the stress distribution were evaluated in terms of the influence of relative moduli and 
sizes of the matrix and fibre, respectively. The propensity for debonding crack initiation at 
the interface arising from matrix yielding (due to normal stress) and interracial yielding (due 
to shear stress) has been determined. The influence of these on the location of debonding 
crack initiation and the maximum debond force has also been studied. 

1: Introduction 
The properties of the fibre/matrix interface have a sig- 
nificant influence on the mechanical properties of 
composites. These interfacial properties include the 
interfacial shear (bond) strength, ~i, interfacial fric- 
tional stress, ~f, matrix shrinkage pressure on the fibre, 
Po, interfacial coefficient of friction, g, and the inter- 
facial toughness, Gi. Recognition of the importance of 
~interfacial properties has led to the development of 
a number of experimental techniques and theoretical 
models for assessing these properties. The commonly 
used tests are the push-out test, the micro-indentation 
test and the pull-out test, of which the single-fibre 
push-out test is most suitable for metal-matrix and 
ceramic-matrix composites. 

Theoretical models on push-out have been de- 
veloped on either a strength-based [1-3] or a fracture- 
based approach [4-63. Although some of the analyses 
are rigorous and comprehensive [1, 43, they cannot be 
readily applied to experimental data to obtain the 
interfacial properties. On the other hand, other studies 
[7-9] are simplified and focused only on the effect of 
interfacial friction. In these cases, it was assumed that 
only frictional bonding exists at the interface, that is, 
there is no resistance to fibre slippage other than 
frictional bonding. The objective was to obtain the 
shear stress at the interface at which the fibre began to 
slide and this value was taken as an indication of the 
interfacial shear strength. This assumption is not valid 
for composite systems with chemical bonding at the 
interface whereby debonding takes place by the 
propagation of a mode II crack at the interface after 
crack initiation. 

The complete stress field in the matrix and fibre and 
at the interface of an intact fibre has not been rigor- 
ously defined. Initially, the shear stress at the interface 
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was assumed to be constant along the length of the 
fibre [10]. However, this assumption only provides 
a reasonable approximation if the embedded length of 
fibre is very short. Further studies [11] have shown 
that the interfacial shear stress is not constant along 
the embedded length but decays exponentially from 
the loaded end. Moreover, existing experimental work 
involves push-out tests of actual composites with 
fibres of less than 150 gm diameter. The small dia- 
meter fibres utilized did not allow experimental obser- 
vation, and hence verification, of the failure processes 
predicted from the theoretical models adopted. 

The aim of the present work was to present a com- 
prehensive theoretical strength-based model which 
can be readily applied to push-out data to assess the 
interracial properties. This model is an extension of 
a strength-based pull-out model [12] which has been 
found [13] to be useful and reliable. Next, the influ- 
ence of the relative moduli ratio and specimen geo- 
metry on the stress distribution and point of crack 
initiation in the push-out specimen were investigated. 
Finally, the effect of Poisson's expansion of the fibre 
on the maximum push-out load and the debonding 
characteristics was examined. This is the first in 
a series of papers on the interfacial properties of metal- 
matrix and ceramic-matrix composites. 

2. Development of the model 
The set-up for the push-out test in the current model 
consists of a specimen (a single fibre embedded in 
a block of matrix or a thin slice cut from an as- 
fabricated composite) positioned over a hole in the 
centre of the support (see Fig. 1). It is assumed that the 
load is applied on to the fibre using a flat-faced in- 
dentor and the load-displacement curve is monitored. 
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Figure 2 Elastic displacement of the fibre~matrix interface for the 
single-fibre push-out test. 

Figure 1 Schematic diagram of the push-out test. 

The indentor is assumed to be much stiffer compared 
to the specimen so that it does not deform appreciably 
during loading. 

A strength-based criterion for debonding crack 
initiation is assumed and the contribution of the 
frictional force to the debonding load during the 
debonding process is taken into account. The analysis 
developed for a single-fibre system in which the matrix 
and fibre are assumed to be linearly elastic up to 
failure is outlined below. The complete derivation of 
the model is presented in Appendices 1 and 2. 

2.1. Stresses at the interface - 

When a load, F v, is applied to a specimen, the speci- 
men will deform elastically as shown in Fig. 2. The 
shear force on an elemental section, dx, at the interface 
is 2rcaz~dx. This force is assumed to decrease linearly, 
in the y-direction, to zero at the circumferential sur- 
face of the matrix. From a consideration of the equilib- 
rium of forces (see Appendix 1), the expressions for the 
compressive stress on the matrix, ~m~, the axial stress 
on the fibre, ~f~,, and the interracial shear stress, z~, 
can be shown to be 

assess the effect of physical and geometrical factors on 
the location where debonding is expected to be in- 
itiated in a push-out specimen. Information on the 
likely cause of debonding may also be established. 
Such analysis will be carried out in a latter section. 

2.2. Push-out force for interfacial 
debond ing 

A strength-based model for the push-out test can now 
be developed on the basis of Equations 1, 2 and 3. In 
the push-out test, the load is usually applied at the 
exposed top surface of the fibre. It is generally believed 
and assumed that interfacial debonding initiates 
around the perimeter of the fibre face at which loading 
is applied. However, this assumption is not always 
valid. It will be demonstrated in Section 3.1 that, 
depending on the physical and geometrical factors, it 
is possible for the interface to debond at the perimeter 
of the fibre face at the opposite (unloaded) end. There- 
fore, it is important to examine whether the force for 
debonding crack initiation and the maximum push- 
out force are influenced by the position at which 
debonding occurs within the specimen. This will now 
be considered. 

Fp [ ( 1 -  t))sinh(c~x)- t)sinh c~(L- x)] 
cYmx - ~(b~ ~ a 2) ~_~ + s~n-nla ( ~ j  

~fx = (1 -- ~) + sinh(aL) 

zx = ~ sinh(aL) 

where 

(1) 

(2) 

(3) 

b In b {2G' / { (b2-a2)[ (b~-a)  ( a ) -  l J ;  L - ' ] ] r E m ( b 2 - a 2 ) + E f a 2 ] }  1 / 2 - E T E - Z J  

Em(b 2 - a 2) 
= E f a  2 4- Em(b 2 --  a 2) (5) 

(4) 

x is the distance from the fibre-loaded end, b and a are 
the radii of the matrix and fibre, respectively, Gm and 
Em are the shear and elastic modulus of the matrix, 
and Ef is the elastic modulus of the fibre. In these 
expressions, stresses with positive values are com- 
pressive while stresses with negative values are tensile 
in nature. The above equations can be utilized to 

2.2. 1. Debonding force 
Expressions for the push-out force to initiate debon- 
ding can be developed for two cases: Case I for debon- 
ding crack initiation at the loaded (top) end, and Case 
II for debonding crack initiation at the unloaded (bot- 
tom) end of the fibre. Utilizing a strength-based 
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criterion, debonding initiates when the interfacial 
shear stress, %, reaches the interracial bond strength of 
the composite system, q. The push-out force, F~, re- 
quired to initiate debonding can be obtained from 
Equation 3 by substituting % with z~ and rearranging 
to determine Fp (where Fp = Fi). 

Case I. If the debonding crack initiates from the top 
face (x = 0), then the push-out force required to initi- 
ate debonding is given by 

27zazi sinh(~L) 
F~ = (6) 

~(1 -~)) + 0~cosh(0~L) 

Case II. If, on the other hand, the crack initiates 
from the opposite base end (x = L), then the corres- 
ponding push-out force required to initiate debonding 
is given by 

27zazl sinh (~L) 
F~ = (7) 

ct(1 -- ~))cosh(~L) + ct~ 

It is apparent that Equations 6 and 7 are different. 
This may lead to a significant and appreciable differ- 
ence in the force for debonding crack initiation. This 
will be demonstrated clearly later for some practical 
fibre composite systems. The dependence of the push- 
out force to initiate debonding on the location from 
which debonding occurs is a factor which has not 
previously been recognized. 

2.2.2. Maximum push-out force 
Expressions for the maximum push-out force can also 
be developed for two cases: Case I for debonding 
crack initiation at the loaded (top) end, and Case II for 
debonding crack initiation at the unloaded (base) end 
of the fibre. 

Case 1, the case for debonding at x = 0. The cri- 
terion for debonding initiation is given by Equation 6. 
Once debonding occurs, the specimen compliance 
changes due to the formation of an interracial crack 
and the maximum stress at the interface decreases to 
a value below q. For further crack growth after crack 
initiation, the applied load has to be increased so that 
the shear stress which is a maximum at the crack front, 
%, reaches the interfacial shear strength, % 

When the crack has propagated along the lengt h of 
the interface, a debonded region and a bonded region 
exist within the push-out specimen. The push-out 
force, Fp, required to ensure further crack propaga- 
tion consists of (1) the force, Fuy , which is the force at 
the crack front when z~ = zi, to allow further debon- 
ding of the remaining bonded length, l., of the fibre, 
and (2) the force, Ff, to overcome frictional push-out 
due to the shrinkage pressure of the matrix on to the 
debonded length, Id, of the fibre. 

The force, F~y, is obtained by substituting L with lu 
in Equation 6 

2rcazi sinh (al,) 
Fuy = ~(1 -- t)) + ~cosh(~/~)  (8) 

The debonded area is 2rca and the interracial frictional 
shear stress is rf (where :of = ~tP0 and ~t is the inter- 
facial coefficient of friction, Po is the residual shrink- 
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Figure 3 Variation of ([]) total push-out force, Fp, (G) frictional 
force, Ff, and (x) debonding force, Fu~, during the debonding pro- 
cess: ( ) with and ( - - - )  without Poisson's expansion. 

age pressure in the matrix. P0 arises due to processing 
and mismatch in thermal properties between the fibre 
and matrix). The frictional push-out force, f f ,  for the 
debonded section, la, is thus given by 

Ff = 2rCazr(L -- lu) (9) 

The total push-out force, F~, 
force ,  Fuy , in the bonded region 
Ff, in the debonded region such 

is the sum of shear 
and frictional force, 
that 

2rca'c i sinh 0t(L - ld) 
Fp = ~(1 -- q0 + a~cosh~(L - Id) + 2rcaZfld (10) 

Equation 10 describes the force necessary for steady 
progressive debonding at the interfacel The changes in 
the total push-out force, Fp, frictional push-out force, 
Fr, and the debonding force, Fuy, with the position of 
the crack front for a copper fibre-epoxy system are as 
shown in Fig. 3. In the analysis, the following values 
were assumed: E m = 4 GPa, Ef = 120 GPa, Vm = 0.3, 
Vf=0.35, b = 2 0 . 5 m m ,  a = l . 5 m m ,  z i = 1 0 M P a ,  
~t = 0.25 and Po = 20 MPa. 

It can be seen in Fig. 3 that Ff varies linearly with 
the position of the crack front. In contrast, the debon- 
ding force, Fuy, is constant initially over a short range 
but decreases progressively as the area which remains 
bonded in the specimen diminishes with advancing 
crack front. Because F~y is the force required to ensure 
that ~x is equal to zi, the results indicate that beyond 
a certain residual bonded length, the force required to 
maintain the stress at the edge of the crack at zi falls 
rapidly. This gives rise to a peak value, Fp(m,x), in the 
total push-out force, Fv (see Fig. 3). It is apparent from 
Fig. 3 that catastrophic interracial failure occurs once 
Fv(m,x) is reached, because the push-out force required 
for the final stages of debonding is less than Fp(max). 
This indicates that there exists a critical length of the 
bonded region, lo, which denotes the transition of the 
debonding crack propagation from a steady to a cata- 
strophic behaviour. 

Therefore, progressive debonding would occur in 
specimens with an embedded length L > Ic. The 
push-out force, Fo, for complete debonding for such 
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Figure 4 Effect of Poisson's expansion of fibre on maximum debon- 
ding force, Fp(max) ( ) with and (---) without Poisson's expan- 
sion. 

specimens corresponds to the maximum value of Fp at 
L - Id = 1~. 

2nazi sinh(~/,) 
Fd = ~(1 -- ~2) + ~tcosh(~/~) + 2rca~f(L - lc) (11) 

However, catastrophic failure occurs in specimens 
with L < l~. The push-out force for complete debon- 
ding, Fo, in this case is the same as the force for 
debonding crack initiation, Fi, given by Equation 6. It 
is important  to note that the maximum load recorded 
in an experimental push-out test is the push-out force 
for complete debonding, Fa. 

The variation of Fd with fibre embedded length, L, 
for the copper fibre-epoxy system is as shown in 
Fig. 4. It can be seen in Fig. 4 that the plot is non- 
l inearin the region L < lc but is linear for the region 
L >Ic.  

Case II, the case for debonding at x = L. A similar 
analysis can be made for the specimens in which 
debonding initiates from the base end. The total push- 
out force is now given by 

2gaz i sinh 0c(L -- Id) 
Fp - ot~ + ~(1 -- ~)cosh~(L -- Id) + 2rcaZfld (12) 

For  specimens with embedded length L < l~, the 
push-out force for complete debonding, Fo, is equal to 
Fi in Equation 7. For  specimens with L ~> l~, Fd is 
given by 

2~a'q sinh(cdo) 
f d  = 0~/ + (X(1 -- ~I)cosh(cdo) + 27~azf(L -- 1~) (13) 

The effect on Fd of the location at which crack initia- 
tion occurs will be considered later. 

force from the matrix to act on the fibre. This is in 
addition to compressive stresses on the fibre which 
develop during processing due to shrinkage of the 
matrix on to the fibre. Therefore, the frictional force at 
the interface will increase. It can be shown (Appendix 
2) that the push-out force, Fp, is given by 

Fp= FuyeXpC-~ld)+~a2p~ Lexp (~-~  l d ) - -11  

(14) 

where k = Emvf/Ef(1 + vm) and vm and vf are the Pois- 
son's ratios of the matrix and fibre, respectively. 

The effect of Poisson's expansion on the variation of 
epl fuy and Ff with advancing crack front, la, is illus- 
trated in Fig. 3. It can be seen that when Poisson's 
expansion of the fibre is taken into account, Fuy has 
the same trend but a higher magnitude than when the 
effects are ignored. This is due to the higher radial 
fibre stress which hinders debonding. The frictional 
force, Ff, increases exponentially with the debonded 
length when Poisson's expansion effect is taken into 
account (see Fig. 3). In contrast, Fe increases linearly 
with the debonded fibre length if the effect is ignored. 
Thus, Poisson's expansion leads to a higher frictional 
force. The total push-out force, Fp, is higher for the 
case with Poisson's expansion. For  the copper-epoxy 
system considered, Poisson's expansion effects did not 
seem to affect Ic significantly. 

The effect of Poisson's expansion on the plot of 
maximum debonding load, Fd, against embedded 
length, L, for the copper fibre-epoxy system is as 
shown in Fig. 4. It can be seen in Fig. 4 that at L > lo, 
the push-out load without Poisson's effect increases 
linearly with L whereas that with Poisson's effect 
increases exponentially. This effect is more pro- 
nounced for specimens with higher embedded length 
or larger aspect ratio. In some systems such as the 
copper fibre-epoxy system considered, a linear ap- 
proximation may be assumed for the exponential in- 
crease. 

3. Results and discussion 
Using the above theoretical model, the effect of t h e  
relative moduli ratio (R = Em/Ef) and the specimen 
geometry (Q = b/a) of a composite system on the 
stress distributions will now be studied. Of interest is 
the influence of these two factors on the point of crack 
initiation in a push-out specimen. The influence of the 
point of debonding initiation on the characteristics of 
the push-out force and the critical embedded length, 
lo, will also be considered. 

2.3. Effect of Poisson's expansion 
The fibre undergoes some radial expansion under the 
action of the push-outZload. This radial expansion in 
the fibre (due to the Poisson ratio effect) has a signi- 
ficant influence on the push-out load in the case of 
a fibre with large aspect ratio or lower stiffness. The 
radial expansion induces an additional compressive 
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3.1. Effect of m o d u l u s  ratio, R--Era~El, on 
the stress d is t r ibu t ion  

The effect of the modulus ratio, R, on the interfacial 
shear stress distribution and the compressive axial 
stress in the fibre and matrix will now be considered. 
For  the plots shown in Figs 5-9, the fibre modulus was 
fixed at 400 G P a  while the matrix modulus was varied 



Aspect ratio, L/a 

1:000 1 2 3 4 5 6 7 8 9 10 

r 

80 

60 

40 

20i 

0 

".~ ~,:, 
L~ "~ ~ , .  

"+'+'+ +. t~. .o . .  , . .e ~,:~: 

0 5 10 15 20 25 30 
Embedded length (mm) 

Figure 5 Variation of interfacial shear stress, ~=, with R = Em/Ef: 
(O) 0.001, ( + ) 0.025, (1:3) 0.1, (V) 0.2, (O) 0.3, ( x ) 0.4, (A) 0.5. 

13. 

# 

0 
400 

Aspect ratio, L/a 

1 2 3 4 5 6 7 8 9 10 

�9 " %1- "O.r f V . o o  ,'~ El. "~'*I, ~. 
, ~ ,  m -4_.. "e. 

[ ' ~ :~ "~  "8"N. '+-.o,.."r 
"," N " ~3. 

~,N.,'o. ~"e. B'B- -,~ ".o, 
~ 8 -  B * 'h .  & ' e  ~.X'O. "'~. "B "4"-. "~. 

"~,:x. ~ -e . "~ 'v  - :"~'8"'B. '+"~-~ 

300 

200 

100 

0 
0 5 10 15 20 25 30 

Embedded length (mm) 

Figure 9 Variation of axial fibre stress, ~f~, along the embedded 
length with R. For key, see Fig. 5; 

Q- 

100 

80 

60 

40 

20 

0 
0 0.1 0.2 0.3 0.4 0.5 

Modulus ratio, Em/E f 

to obtain different values of R. The matrix and fibre 
radius were fixed at 20.5 and 3 mm, respectively (fixed 
geometry ratio of 41/6) and a push-out load of 10 kN 
was assumed for an embedded length of 30 mm. 

The values of R considered in this analysis cover 
a wide range of moduli ratio for polymer-matrix 
(PMC), metal-matrix (MMC) and ceramic-matrix 
composites (CMC). Typical values of R for PMCs are 
0q).l (0.067 for glass--epoxy), values of R for MMCs 
are 0.1-0.4 (0.325 for SiC-Ti) and for CMCs are 
0.120.8 (0.29 for SiC-RBSN). 

Figure 6 Variation of interfacial shear stress, ~,, at the top, x = 0 
(rq), and the base, x = L(&). 
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Figure 8 Effect of mode I crack propagation on interracial debon- 
ding. 

3. 1. 1. Effect of  modulus ratio on 
interfacial debonding 

Interfacial debonding will initiate at the position 
where the interfacial shear stress is maximum. From 
the plots of zx versus embedded length in Fig. 5, it can 
be seen that for most values of R at a fixed geometry 
ratio of 41/6, the top-end or loaded-end of the speci- 
men experiences high shear stress concentrations. The 

�9 shear stresses decrease rapidly along the embedded 
length away from the loaded end. It is apparent from 
Fig. 5 that in cases where R > 0.025, the debond crack 
will initiate from the loaded end (x = 0). This implies 
that interfacial debonding in push-out specimens in 
which the fibre is surrounded by an appreciable 
amount of matrix (geometry ratio of 41/6) in MMCs 
and CMCs (where R > 0.025) initiate at the top 
loaded end of the fibre. This assumption is only cor- 
rectly made in some existing published work on push- 
out tests in MMCs and CMCs. 

On the other hand, the shear stress distribution 
becomes more uniform along the embedded length 
when R approaches 0.025. In this case, the shear 
stresses at both ends are similar and simultaneous 
debonding may be expected to take place. For 
R < 0.025, the shear stress distribution is reversed. 
The shear stress at the base is higher than at the 
loaded end and debonding will initate at the bottom 
and propagate upwards. The above R values fall with- 
in the range of that for PMCs. Hence, the above 
analysis indicates that the assumption of interracial 
debonding initiation from the top loaded end is clearly 
erroneous for certain PMCs. The point of debonding 
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initiation has to be established for individual PMCs to 
avoid misleading evaluation of push-out data. 

A clearer representation of the shear stresses at the 
top (x = 0) and base (x = L = 30 mm) is shown in Fig. 
6. The shear stress at the top increases with R, whereas 
that at the base decreases with R. This analysis clearly 
contradicts the assumption made in many studies 
[1, 4, 6] that the debonding crack always initiates 
from the loaded end for the same push-out configura- 
tion. Whenever possible, this initiation point should 
be determined physically during the test or from shear 
stress analysis as this will affect the interpretation of 
results obtained, as will be discussed in Section 3.4. 
Similar plots can be generated to determine the influ- 
ence of R on the point of interracial crack initiation for 
any fixed value of geometry ratio. 

3. 1.2. Effect on matr ix  yielding 
The stress distribution in the matrix, CYmx, is shown in 
Fig. 7. It can be seen that Crmx is compressive over the 
whole embedded length for all values of R. The stress 
is 0 at the free surface (x = 0) and increases to a max- 
imum at the base (x = L). 

The strength of a fibre-reinforced composite is 
greatly improved over that of the monolithic matrix 
material due to the load-bearing ability of the fibres. 
Thus, to obtain a high-strength composite, the load 
transfer from the matrix to the fibre must be effective. 
From Fig. 7, it is observed that the stress transfer from 
the matrix to the fibre becomes less effective as R in- 
creases. In other words, the stress transfer in com- 
posite systems with high R is ineffective. 

Matrix yielding is another important factor to be 
considered. Failure initiation by matrix yielding may 
occur in composite systems where zl > I3"mx(yield). This 
may result from a strong interface or interphase 
and/or a large compressive force of the matrix on the 
fibre due to the difference in the thermal coefficients of 
expansion. For  all values of R, Crm~ is maximum at the 
base. Therefore, failure by matrix yielding will only 
occur at the base for all PMCs, MMCs and CMCs. 
Debonding from the base will further be favoured if 
large bending stresses exists due to a large support 
hole size or testing of very thin specimens (see Fig. 8). 
In this case, matrix yielding will be coupled with mode 
I crack propagation. 

3. 1.3. Effect on fibre failure 
The variation of axial stress distribution along the 
fibre with R is as shown in Fig. 9. The axial stress is 
compressive along the fibre length, being maximum at 
the loaded end and decreasing to 0 at the base. The 
high stress concentration at the top of the fibre can 
lead to fibre failure (especially if the fibres are brittle), 
thereby rendering the push-out test void. 

Initially, sharp-edged indenters, similar to the pyr- 
amid indenters used in the microhardness test, were 
used for micro-indentation or push-in test [-10, 14, 15]. 
The extremely high stress concentrations at the fibre 
surface in contact with the sharp edge will give rise to 
rupture or splitting of brittle fibre. Desaeger and Ver- 
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poest [14] reported that some of the glass fibres rup- 
tured but all the carbon fibres split during the indenta- 
tion tests. The phenomenon of carbon fibre splitting is 
a result of the inherent microstructure of carbon. The 
validity of the results obtained from the push-in or 
push-out of such materials is thus questionable. 

The sharp-edged indenter was consequently re- 
placed by a flat-end indenter. However, the fibre may 
still fail before debonding if the composite system has 
a high interfacial shear strength. This has been ob- 
served in the push-out of glass rod (diameter 5 mm) 
from an epoxy matrix using a flat-end indenter [16]. 
In contrast, the pull-out test of glass fibres has been 
carried out successfully on the same composite system 
[17]. The solution to this may be to restrict the push- 
out test of such systems to thin specimens. Therefore, 
it is important to realize that the push-out test (or any 
other test) may not be suitable for assessing the inter- 
facial properties of all materials. 

3.2. Effect of specimen geometry 
The effect of specimen geometry (b/a ratio) on the 
point of debonding initiation was studied for a steel 
fibre-epoxy matrix system (R = 0.02), a silicon carbide 
fibre-aluminium matrix system (R = 0.175) and a sili- 
con carbide fibre-zirconia matrix (R -- 0.29) system. 
The parameters used in the analysis are given in Table 
I. The radius of the fibre, a, was fixed at 3 mm while 
the radius of the matrix, b, was varied to obtain 
different b/a ratios. A push-out force of 10 kN was also 
assumed for a fibre embedded length of 30 mm. 

The variation of the interracial shear stress levels at 
the top (x = 0) and at the base (x = L) of the specimen 
with specimen geometry is illustrated in Fig. 10a-c. 
The difference in stresses at the top and the base of the 
specimen approaches a constant value as b/a in- 
creases. This difference is highest for the SiC-zirconia 
system and lowest for the steel-epoxy system. 

It can b e  seen in Fig. 10 that a top-base failure 
transition occurs in the PMC, MMC and CMC sys- 
tems considered. This transition point occurs at 
a higher b/a ratio for the steel-epoxy PMC system 
(b/a = 7) than for the SiC-A1 MMC system (b/a = 3) 
and the SiC-zirconia CMC system (b/a = 2). Thus, the 
point of debonding initiation in all composite systems 
is dependent on the specimen geometry ratio. This has 
serious implications on the selection of test fibres in 
a push-out test. 

Usually, a composite (containing many embedded 
fibres which are assumed to be in parallel) which is 
sliced in a direction perpendicular to the fibre axis is 
utilized in a push-out test. The b/a ratio of individual 
fibres in such a composite slice may be taken to be half 

TABLE I Parameters of the composite systems 

System Em (GPa) Ef (GPa) vm vf 

Steel-epoxy 4 200 0.3 0.3 
Silicon carbide-aluminium 70 400 0.33 0.3 
Silicon carbide~irconia 200 400 0.3 0.3 
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Figure 10 Effect of geometry ratio b/a on interfacial shear stress, ~=, 
at the ([3) top and (/k) base for (a) steel-epoxy system, (b) silicon 
carbide-aluminium system and (c) silicon carbide-zirconia system. 

the distance between the centres of two neighbouring 
fibres. It is apparent from Fig. 10 that the point of 
debonding initiation for all fibres in such a specimen 
would not be the same. Debonding initiation in test- 
fibres within a fibre bundle (small b/a ratio) will occur 
at the unloaded (base) end of the fibres whilst that in 
test-fibres away from fibre bundles will occur at the 
loaded (top) end. Errors will be introduced if data 
from fibres under both situations are evaluated to- 
gether. 

3.3. Inf luence of po int  of crack in i t ia t ion 
It has been established in an earlier section that the 
interfacial crack may initiate either at the loaded end 
or the base of the system. The influence of the point of 
crack initiation on the crack initiation force and the 
debonding force will now be considered. The pertinent 
equations for debonding initiation from the loaded 
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Figure 11 Effect of crack initiation point on crack initiation force, 
Fi: crack initiates at x = 0 (V) and at x = L ([2]). 
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Figure 12 Effect of crack initiation point on total push-out force, 
Fp, and debonding force, Fur: crack initiation at ( ) x = 0 and 
( - - - )  x = L. For  key, see Fig. 3. 

(top) end are given by Equations 6 and 11 while that 
for the unloaded (base) end are given by Equations 
7 and 12. The steel-epoxy system considered in Sec- 
tion 3.2 with a geometry ratio of 41/6 will be used for 
the analysis in this section. For  this system, the crack 
propagation has been predicted to initiate from the 
base. 

The effect of crack initiation at x = 0 and x = L on 
the crack initiation force, Fi, is shown in Fig. 11. For  
both cases, Fi increases rapidly with embedded length 
initially before it plateaus off to a constant value for 
large embedded length. However, the force for debon- 
ding initiation at the top is higher than that at the base 
(which force is higher is actually dependent on the 
system's parameters, c~ and 4). The values of both forces 
are close to each other for small embedded length but 
the difference becomes significant for large embedded 
length. Because, for this system, the crack has been 
predicted to propagate from the base, the assumption 
of crack propagation from the top will give an over- 
estimation of the crack initiation force, Fi. 

The effect of debonding initiation point on the deb- 
onding force, Fp, and the maximum debonding force, 
Fp(max), is shown in Fig. 12. Debonding initiation from 
the loaded end results in a higher compressive force, 
f u y  , a t  the crack-tip to ensure further crack propaga- 
tion. This, consequently, gives rise to a larger max- 
imum debonding force. Similarly, an assumption of 
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crack propagation from the top will lead to an overes- 
timation of Fp(m~x). 

The displacement of the matrix in the x-direction, 
Um~, can be written as 

4. Conclusion 
The stress distributions for Zx, (Ymx and cyf~ along the 
embedded length of an intact fibre are affected by R, 
the moduli ratio, and b/a, the geometry ratio of the 
matrix and fibre, of the push-out specimen. The force 
for initiation of interfacial debonding, Fi, and the total 
debonding force, Fo = F p ( m a x ) ,  is dependent on the 
point of debonding crack initiation. A top-base deb- 
onding initiation transition occurs in PMCs, MMCs 
and CMCs and this is dependent on both R and b/a. 
Debonding initiation arising from matrix failure will 
occur more readily at the base of the specimen. Fibre 
failure tends to occur at the loaded end. The effect of 
Poisson's expansion of a fibre is to increase the max- 
imum push-out load. 

U m x = f i ~ m d Y  (A6) 

where z~,y is the shear stress acting on the matrix in 
the x-direction at a distance y from the centre of the 
fibre=matrix system. 

The shear stress is zero at the circumferential sur- 
face. The shear force is assumed to decrease linearly in 
the y-direction from Si at the interface to 0 at the 
circumferential surface of the matrix. The shear force 
at the interface (r = a) is given by 

Si = 2rca'cxdx (A7) 

and the shear force at a distance y is given by 

a( y) 
z=,, = z= 7 ~ (18) 

Appendix 1. Stress distributions 
Consider an elemental section, dx, of the matrix and 
fibre as shown in Fig. 2. From geometrical consid- 
erations 

(1 - gfx)dx - -  (Umx 27 dUmx ) + Umx -~- 8mxdx = dx  
(A1) 

Simplifying 
d grax 

dx - E m x  - -  ~ ; f x  (A2) 

Consider the stresses acting on an element of the fibre 
and of the matrix at the interface of the push-out 
specimen illustrated in Fig. A1. From the equilibrium 
of forces on the matrix element 

(b 2 - a 2 )  dc~m~ 
2a dx (A3) ~x 

For the fibre element 

"I~ x -- 
a d ( y f x  

2 dx (A4) 

Taking the cross-section at any distance x, the push- 
out force can be written as 

Fp = 7~aZ(lfx + rc(b 2 --  a2)O'mx (A5) 

Substituting Equation A8 into Equation 17 gives 

Um~= GmmY dy 

- G a I ( b _ b a ) l n ( ! )  - 1 ]  (A9) 

Differentiating Equations 13 and A9 with respect 
to x 

dz~ ( b Z - a Z ) d 2 ~ m ~  
d x - \  2a j dx 2 (A10) 

dUmx a F b ln(b~ 1]dz~ 
dx - G m L ( b ~  a) ~ k a / -  A dx (All) 

Substituting Equation 110 into Equation Al l  gives 

d gmx _ a [ b ln(_b ~ 1 ] (b2 -a2~d2~mx  
d~- Gm L(b - a) \ a J  - A \ 2a /I dx 2 

(A12) 

Equation 12 can be expressed in terms of the theory of 
elasticity 

dUmx (~mx (Yfx 

dx Em Ef 
(A13) 

Substituting Equation A13 into Equation 112 results 
in 

f fmx 

Matrix 

~rnx + d f fmx  

~x 

L 

~ Z x Fibre . ~ + d ~  

Figure A1 Stresses acting on an element of fibre and matrix. 

d2 CYmx { V ~ b  ln(b~ 1} -1 
dx ~ - 2Gin (b 2 - a 2) L(b - a) \ a J  - 1 

X ~, Em g f  ] (A14) 

Rearranging Equation A5 

f p  rc(b 2 --  a 2) 
(Yfx -- O'mx x a  2 ga 2 

= L a 2) O-ix ] a2[ -(b 2- 
A 

(A15) 
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Substituting Equation A15 into Equation A14 gives 

d2~ 2 - 2Gm { ( b 2 - a 2 ) [ ( ~ _ b  a ) l n ( ! ) -  11} ~ ~ ~m~ 1 (Em aZEfI~ -(b2- a2) O'mxl } 

=2Gm{(b2-ae)[(b@a)ln(!)-l]}-l{~m+ (b2~a2)~mx 
Efa 2 J 

Equation A16 is of the form 

d 20m~ 
dx 2 -ACYmx+B 

where 

x{ -Efa2+Em(bz-a2) 

(A17) 

B:-2GmFp{ga2Ef(b2--a2)I(b~)ln(!)-ll} -1 

The solution to Equation A17 is 

Fv 
(Ym~ - ~z(b 2 _ a 2) 

( 1  - qt) sinh(ax) - ~t sinh a(L 

(118) 

To obtain (yf~, substitute Equation A18 into Equation 
A14 

(~f~ = - -  ( l - V ) +  
71;a 2 

(x) - 1)sinh(~x) + ~sinh~(L - x)-] 
sinh(~L) J 

(A19) 

Differentiating Equation A19 with respect to x 

dcy,~ _ Fp [_u(qt- 1 )cosh(ux) -  ~ c o s h ~ ( L -  x)~ 
dx ua 2 ~ s-~-nh(-aL-) J 

(A20) 

Finally, substitute Equation A20 into Equation A4 to 
obtain the expression for % 

Fp [ a ( 1 - -  * )cosh(~x)+  ~ t c o s h ~ ( L - - x ) t  
zx = 2~a sinh(otL) 

(121) 

Appendix 2 
Push-out against friction 
When the fibre/matrix interface has debonded, the 
force against the push-out of the fibre is the frictional 
force at the interface. This frictional force is governed 
by the matrix shrinkage pressure, Po, the interfacial 
frictional coefficient, g, and the Poisson's expansion of 
the fibre due to the compressive axial force. 

The single fibre push-out model is illustrated in Fig. 
A2. Consider the forces acting on the fibre element, dl, 

(A16) 

' [ 
7-;, 

b 

- '  't U/ 

Figure A2 Partial debonding and partial frictional sliding of 
a single-fibre specimen. 

Of 

d/ -I 

of + d~f 

Figure A3 Stresses on an elemental length, dl, of the debonded 
region. 

in Fig. A3. From the equilibrium of forces on the fibre 
element, dl, we have 

~a2dcyf = - 2~a'cfdl (A22) 

such that 

do-f 27:f 
(123) 

dl a 

where (yf is the compressive stress on the fibre and ~f is 
the frictional stress at the interface. The value of ~f is 
related to the matrix shrinkage pressure and the inter- 
facial frictional coefficient by "el = gP0. Substituting 
this into Equation A23 gives 

d~f 2gP0 
- (124) 

dl a 

The frictional force over the debonded region 
can be obtained by integrating Equation A24 over 
the debonded region. Because Po can be con- 
sidered a constant for a rigid fibre and g is a constant, 
we have 

Ff = 2rcagPold (A25) 
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Effect of Poisson's expansion of the fibre 
For a fibre of lower stiffness or high aspect ratio, the 
effect of Poisson's expansion is significant due to the 
compressive axial force. The Poisson's expansion of 
the fibre increases the effective matrix shrinkage pres- 
sure on the fibre and thus increases the interracial 
friction. Because the axial compressive stress, c~f, of 
the fibre varies along the embedded length, the radial 
expansion strain of the fibre is related to ~f by 

VCYf 
ar = (126) 

E 

The thick-walled cylinder theory can be applied to 
determine the increase in shrinkage pressure due to 
Poisson's expansion. Substituting the expression for 
radial expansion strain into the thick-walled cylinder 
theory results in a pressure increment of 

E m vf o-f 
Vi - (A27) 

Ef(1 + Vm) 

The frictional stress at the interface is given by 

"cf=g P O + E f ( I + V m ) j  

= g(Po + kcyf) (A28) 

where k = EmVf/Ef(1 + Vm). 
Substituting Equation A28 into Equation A23 and 

rearranging 
deaf 21.tk~f 2gPo 

+ - (A29) 
dI a a 

This is a first-order differential equation with solution 
given by 

exp ~- 

The constant C can be evaluated from the boundary 
condition cyf=0 at l = L - l u = l a .  The push-out 
force on the fibre due to friction over a debonded 
region, ld, is given by 

Ff-rca2P---~[exp(~ff-la)-ll (A31) 

Effect of friction in the debonding process 
When the crack has propagated partially along the 
length of the interface, two distinct regions exist: the 

debonded region and the bonded region. The com- 
pressive force, F~, acting on the fibre at 0 ~< x ~< la can 
be obtained by multiplying Equation A30 by the 
cross-sectional area of the fibre such that 

Fxexp(~_~x)_ na2Po _s exp ( ~ - ~ x )  + D 

(A32) 

The constant, D, can be evaluated from the boundary 
condition Fx = Fuy at x = ld. 

The push-out force is given by the value of Fx at x = 0 

F p =  F~,exp(~-~la) + rca2P~ - - - s  ( - ~ / d )  - 11 

(A34) 
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